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Transport theory yields renormalization-group equations

Jochen Rau
Max-Planck-Institut fu¨r Physik komplexer Systeme, Bayreuther Strabe 40 Haus 16, 01187 Dresden, Germany

~Received 13 December 1996; revised manuscript received 22 January 1997!

We show that dissipative transport and renormalization can be described in a single theoretical framework.
The appropriate mathematical tool is the Nakajima-Zwanzig projection technique. We illustrate our result in
the case of interacting quantum gases, where we use the Nakajima-Zwanzig approach to investigate the
renormalization-group flow of the effective two-body interaction.@S1063-651X~97!02205-8#

PACS number~s!: 05.70.Ln, 05.60.1w, 11.10.Gh, 71.10.2w
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I. INTRODUCTION

The basic theme of statistical mechanics—how to obta
system’s macroscopic properties from the laws of its und
lying microscopic dynamics—appears in many variatio
Two out of many examples are the problem of determin
critical exponents at second-order phase transitions and
problem of deriving macroscopic transport equations. T
former is usually tackled with the help of Wilson’s renorma
ization group@1–4#, a mathematical tool that allows one
iteratively eliminate short-wavelength modes and thus to
rive at effective~‘‘renormalized’’! theories that describe th
dynamics on successively larger length scales. The latter
been tackled in various ways, among them the so-called
jection technique by Nakajima@5#, Zwanzig @6#, Mori @7#,
and Robertson@8#. Eliminating unmonitored, rapidly oscil
lating degrees of freedom from the equation of motion
means of suitable projections in the space of observables
projection technique yields closed~but generally no longer
Markovian! ‘‘transport equations’’ for the selected macr
scopic degrees of freedom.

While the two methods—Wilson’s renormalization grou
and Zwanzig’s projection technique—may appear quite
ferent in their mathematical formulation, they are very sim
lar in spirit. In both cases one strives to focus on selec
features of the dynamics~its infrared limit or the evolution of
only few macroscopic observables! deemed interesting an
to this end devises a systematic procedure for eliminating
other, ‘‘irrelevant’’ degrees of freedom~a procedure com-
monly referred to as ‘‘coarse graining’’!. Discarding thus
unnecessary baggage from the problem at hand, one
ceeds in describing the interesting features of the dynam
without ever having to solve the complete, and far too co
plicated, microscopic theory. This similarity of the basic a
proach suggests that renormalization and the transition f
microdynamics to macroscopic transport are in fact clos
related procedures and that it should be possible to cast t
into a common theoretical framework.

Building a bridge between renormalization and transp
theory would not only be satisfying conceptually, but wou
also help tackle a variety of practical problems. Often
macroscopic evolution of a complex quantum system exh
its both dissipationand modified, renormalized dynamica
parameters such as effective masses or effective interact
Let us consider, for example, liquid3He or nuclear matter
away from equilibrium. In order to formulate a macroscop
551063-651X/97/55~5!/5147~10!/$10.00
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transport theory for such an interacting fermion system o
must performtwo consecutive coarse-graining procedure
first eliminating short-wavelength modes to arrive at an
fective ~renormalized! theory for quasiparticle excitation
close to the Fermi surface, which typically feature effecti
masses and screened interactions@9–11#, and then discarding
their statistical correlations to obtain an Uehling-Uhlenbe
type transport equation for the single-quasiparticle distri
tion. The description of the macroscopic dynamics theref
requires an appropriate combination of renormalization a
statistical coarse graining.

Clearly, the two coarse grainings do not commute;
latter ~statistical coarse graining! is contingent upon the
former ~renormalization!. For instance, the renormalization
group flow yields screening@11# and hence renders the inte
action range finite, thus generating that separation of sc
which is indispensable for the subsequent derivation o
Markovian transport theory@12#. But what happens if scale
converge rather than separate upon renormalization? H
then are renormalization and statistical coarse graining
combined? More generally, what is the connection betw
effective dynamics and dissipation? Does their interplay le
to interesting new phenomena? To what extent c
renormalization-group techniques be applied to study n
equilibrium, dissipative processes? How do transport coe
cients change under renormalization-group transformatio
Is it always true that transport coefficients are renormaliz
by simply trading bare masses and couplings for their ren
malized counterparts, while keeping the form of the fun
tional dependence on these parameters@13#? In addition,
somewhat speculative, are there ‘‘universality classes’’
transport theories? These and other issues might be bes
proached in a unified mathematical framework that enco
passes both renormalization and dissipative transport as
cial cases.

There has already been some progress towards su
unified picture. The success of Anderson’s ‘‘poor man
scaling’’ approach to the Kondo problem@14#, Seke’s
projection-method treatment of the nonrelativistic Lamb sh
@15#, the calculation of the one-loop renormalization off4

theory by means of Bloch-Feshbach techniques@16#, and a
recent renormalization-group study of interacting fermi
systems within a purely algebraic framework@17# suggest
that one can formulate Wilson’s renormalization in terms
projections in Hilbert space, completely analogous to
projections in the space of observables, which, in
5147 © 1997 The American Physical Society
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5148 55JOCHEN RAU
Nakajima-Zwanzig approach, lead to macroscopic trans
equations.

In the present paper I wish to make this analogy ev
more explicit. I will show that one can actually obta
renormalization-group equations within the Nakajim
Zwanzig projection approach and that hence renormaliza
can be embedded into the general mathematical framew
of transport theory. After a brief introduction to the proje
tion technique~Sec. II! and a discussion of various approx
mations~Sec. III! I shall isolate the dissipative and nondi
sipative parts of the macroscopic dynamics and show tha
latter is governed by an effective, renormalized Hamilton
~Sec. IV!. For illustration, these general ideas are then
plied to studying the low-energy dynamics of interacti
quantum ~Bose and Fermi! gases, in particular the
renormalization-group flow of their effective two-body inte
action~Secs. V and VI!. Finally, I shall conclude with a brie
summary in Sec. VII.

II. PROJECTION TECHNIQUE

In this section I give a very brief introduction to th
Nakajima-Zwanzig projection technique@5–8#. More details
can be found in several textbooks@18# and in recent reviews
@12,19#.

When studying the dynamics of a macroscopic quant
system away from equilibrium, one typically monitors th
evolution of the expectation values

ga~ t !:5tr@r~ t !Ga# ~1!

of only a very small set of selected~‘‘relevant’’ ! observables
$Ga%. These evolve according to

ġa~ t !5 i „r~ t !uLGa…, ~2!

with r(t) being the statistical operator,L the Liouvillian

L:5\21@H,* # ~3!

associated with the HamiltonianH, and the inner produc
( u ) defined as

~AuB!:5tr@A†B#. ~4!

The equation of motion in the form~2! does not constitute a
closed system of differential equations for the selected
pectation values$ga(t)%; its right-hand side will generally
depend not just on the selected, but also on all the o
‘‘irrelevant’’ degrees of freedom. With the help of the pro
jection technique to be sketched below, these irrelevant
grees of freedom can be systematically eliminated from
equation of motion, in exchange for non-Markovian a
~possibly! nonlinear features of the resulting closed ‘‘tran
port equation’’ for the$ga(t)%. Mapping thus the influence o
irrelevant degrees of freedom onto, among other feature
nonlocal behavior in time opens the way to the exploitat
of well-separated time scales and hence serves as a
starting point for powerful approximations such as the M
kovian and quasistationary limits. Indeed, in this fashion o
can derive many of the well-known equations of nonequil
rium statistical mechanics, for example, rate, quantum Bo
mann, Master, Langevin-Mori, and even time-depend
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n

-
n
rk

he
n
-

x-

er

e-
e

, a
n
od
-
e
-
-
t

Hartree-Fock equations. As I will show later in this pap
the same projection technique allows one to der
renormalization-group equations.

The projection technique is based on a clever insertion
projection operators into the equation of motion~2!. A pro-
jection operator is any operatorP that satisfiesP25P; its
complement, which is also a projection operator, is deno
byQ:512P. The projection operators, like the Liouvillian
are so-called superoperators: they do not act in Hilbert sp
but in the space of observables~Liouville space!. For our
purposes we consider projectors that project arbitrary vec
in Liouville space onto the subspace spanned by the
operator and by the relevant observables$Ga%, i.e., for which

PA5A ⇔ APspan$1,Ga%. ~5!

For simplicity we assume that the Hamiltonian and hence
Liouvillian, as well as the relevant observables, are not
plicitly time dependent. In contrast, we allow the projector
depend on the expectation values$ga(t)% of the relevant ob-
servables, thus making it an implicit function of time
P(t)[P@ga(t)#, with the sole restriction that for any observ
ableA,

S r~ t !U ddtP~ t ! AD50. ~6!

For the time being we admit any projector that satisfies
two constraints~5! and ~6!. Later, in Sec. IVB, we shall
make a specific choice forP(t).

Now let T(t8,t) be the~super!operator defined by the dif
ferential equation

]

]t8
T~ t8,t !52 i Q~ t8!LQ~ t8!T~ t8,t !, ~7!

with the initial conditionT(t,t)51. It may be pictured as
describing the evolution of the system’sirrelevantdegrees of
freedom. With its help the equation of motion for the s
lected expectation values$ga(t)% can be cast into the—stil
exact—form

ġa~ t !5 i „r~ t !uP~ t !LGa…

2E
0

t

dt8 „r~ t8!uP~ t8!LQ~ t8!T~ t8,t !Q~ t !LGa…

1 i „r~0!uQ~0!T~0,t !Q~ t !LGa… ~8!

for any time t>0. Comparing this form of the equation o
motion with the original form~2! we notice that, apart from
the replacement (ru→(ruP, there are two additional terms
~i! an integral~‘‘memory’’ ! term, containing contributions
from all times between the initial and the present time, a
~ii ! a ‘‘residual force’’ term describing the effect of irrel
evant components in the initial state. The physical mean
of both terms can be easily discerned if read from left
right. ~i! At time t8,t relevant degrees of freedom~pro-
jected out byP) couple via an interaction (L) to irrelevant
degrees of freedom~projected out byQ), which subse-
quently evolve in time (T) and, due to a second interactio
(L), acquire relevancy again, thus influencing the evolut
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55 5149TRANSPORT THEORY YIELDS RENORMALIZATION- . . .
of the relevant observableGa at the present timet. ~ii ! Irrel-
evant components in the initial state (Q) evolve in time
(T) and, due to interaction (L), acquire relevancy at the
present timet.

In many practical applications the irrelevant compon
of the initial state can be shown to vanish, or else to
negligible, in which case the residual force term can
dropped from the equation of motion. What remains then
the desired closed system of~possibly nonlinear! coupled
integro-differential equations for the selected expectat
values$ga(t)%. The principal feature of these closed equ
tions is that they are non-Markovian: Future expectation v
ues of the selected observables are predicted not just on
basis of their present values, but based on their entire his

III. APPROXIMATIONS

A. Second-order perturbation theory

Often the Liouvillian can be split into a free part and
interaction part,

L5L~0!1V, ~9!

corresponding to a decompositionH5H (0)1V of the Hamil-
tonian. Provided free evolution does not mix relevant a
irrelevant degrees of freedom, i.e., provided

@L~0!,P~ t !#50, ~10!

then in the memory termPLQ5PVQ and QLP5QVP;
hence the memory term is at least of second order in
interaction. To second order, therefore, one can simply
place

Q~ t8!T~ t8,t !Q~ t ! → Q~ t8!T~0!~ t8,t !Q~ t !, ~11!

whereT(0) is a time-ordered exponential ofQL(0)Q. Using
Eq. ~10! andQ(t2)Q(t1)5Q(t2), all theQ’s appearing in
T(0) can be shuffled to the left and absorbed intoQ(t8),
allowing one to replace further

T~0!~ t8,t ! → U~0!~ t8,t !:5exp@ i ~ t2t8!L~0!#. ~12!

One thus obtains~without residual force!

ġa~ t !5 i „r~ t !uP~ t !LGa…

2E
0

t

dt „r~ t2t!uP~ t2t!VQ~ t2t!U~0!~0,t!VGa… .

~13!

B. Markovian limit

We have seen that predictions of future expectation va
of the selected observables generally depend in a com
cated manner on both their present expectation values
their past history. There are thus two distinct time scales~i!
the scalet rel , or several scales$t rel

i %, on which the selected
expectation values$ga(t)% evolve and~ii ! thememory time
tmemwhich characterizes the length of the time interval th
contributes significantly to the memory integral. Loose
speaking, the memory time determines how far back into
t
e
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past one has to reach in order to make predictions for
further evolution of the selected observables. If this mem
time is small compared to the typical time scale on which
selected observables evolve,tmem!t rel , then memory ef-
fects can be neglected and predictions for the selected
servables can be based solely on their present values.
may then assume that in the memory termga(t8)'ga(t) and
hence replace

P@ga~ t8!#→P@ga~ t !#,

„r~ t8!uP~ t8!→„r~ t !uP~ t !. ~14!

This is the Markovian limit.
Closely related to the Markovian limit is the quasistatio

ary limit: At times t@tmem it no longer matters for the dy
namics when exactly the evolution started, and hence in
~8! the integration over the system’s history may just as w
extend from2` to t rather than from 0 tot. In the Markov-
ian and quasistationary limits the equation of motion, to s
ond order and without residual force, simplifies to

ġa~ t !5 i „r~ t !uP~ t !LGa…

2E
0

`

dt „r~ t !uP~ t !VQ~ t !U~0!~0,t!VGa… .

~15!

This approximate transport equation for the$ga(t)% shall be
the basis of our further investigations.

IV. ANALYSIS

A. Reformulation of the transport equation

Starting from the approximate transport equation~15!, we
eventually wish to discern two of the main features of ma
roscopic transport:~i! dissipation and~ii ! the modification
~‘‘renormalization’’! of the effective interaction. The latte
will then, in Sec. V, lead on to the consideration
renormalization-group equations.

To this end we first split the free evolution operator in
its symmetric and antisymmetric parts

U~0!~0,t!5 1
2 @U~0!~0,t!1U~0!~t,0!#

1 1
2 @U~0!~0,t!2U~0!~t,0!#, ~16!

use

E
0

`

dt @U~0!~0,t!1U~0!~t,0!#52pd~L~0!! ~17!

in the symmetric part, and in the antisymmetric part expl
the liberty~thanks to the Markovian limit! to insert free evo-
lution operatorsU(0)(0,t) andU(0)(t,0) in front of P(t) or
Ga , respectively. We thus obtain

ġa~ t !5 i „r~ t !uP~ t !Leff~ t !Ga…

2p„r~ t !uP~ t !VQ~ t !d~L~0!!VGa…, ~18!

where
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5150 55JOCHEN RAU
Leff~ t !5L1dL~ t ! ~19!

denotes a~possibly time-dependent! ‘‘effective’’ Liouvillian
determined by

dL~ t !52
i

2E0
`

dt$@V~t!,V#2@P~ t !V~t!P~ t !,P~ t !VP~ t !#%

~20!

and

V~t!5\21@V~t!,* # ~21!

is the commutator with the interaction-picture operator

V~t!:5U~0!~0,t!V. ~22!

Next we evaluate the reformulated transport equation~18! by
making a suitable choice for the yet undetermined projec
P(t).

B. Robertson projector

Associated with the expectation values~1! of the selected
observables is, at each timet, a generalized canonical stat

r rel~ t !:5Z~ t !21exp@2la~ t !Ga#, ~23!

with the partition function

Z~ t !:5tr exp@2la~ t !Ga# ~24!

and the Lagrange parameters$la(t)% adjusted such as to
satisfy the constraints

tr@r rel~ t !Ga#5ga~ t !. ~25!

We have used Einstein’s convention: Repeated upper
lower indices are to be summed over. The generalized
nonical stater rel(t), among all states that satisfy the co
straints ~25!, is the one that maximizes the von Neuma
entropy

S@r#:52k tr ~r lnr!. ~26!

For this reason it may be considered the ‘‘least biased’’
‘‘maximally noncommittal’’ with regard to the unmonitore
degrees of freedom; it is sometimes called the ‘‘relev
part’’ of the full statistical operatorr(t).

There exists a unique time-dependent projectorPR(t) that
projects arbitrary vectors in Liouville space onto the su
space spanned by the unit operator and by the relevant
servables$Ga%, the projection being orthogonal with respe
to the time-dependent scalar product

^A;B&~ t !:5E
0

1

dm tr@r rel~ t !
mA†r rel~ t !

12mB#. ~27!

This projectorPR(t) satisfies both conditions~5! and~6! and,
moreover, can be shown to yield

„r~ t !uPR~ t !5„r rel~ t !u ~28!

at all times. This special choice forP(t), originally proposed
by Robertson@8,20#, has the important advantage that in co
r

nd
a-

r

t

-
b-

-

trast to other frequently used projectors such as the M
projector @7#, it permits the derivation of closed transpo
equations valid arbitrarily far from equilibrium. We shall us
this projector throughout the remainder of the paper~and for
brevity, we shall immediately drop the subscriptR).

With the Robertson projector the transport equation~18!
takes the form

ġa~ t !5 i „r rel~ t !uLeff~ t !Ga…1Mca~ t !l
c~ t !, ~29!

where

Mca~ t !:5p^Q~ t !VGc ;d~L~0!!Q~ t !VGa&
~ t ! ~30!

is a matrix whose eigenvalues are all real and non-nega
In this formulation it is particularly easy to distinguish th
dissipative and nondissipative parts of the dynamics: As
will show, the second term in Eq.~29! is solely responsible
for dissipation, whereas the first term yields nondissipat
dynamics governed by a modified~renormalized! effective
Hamiltonian.

C. Dissipation

An observer who monitors only the selected degrees
freedom does not have complete information about the s
tem’s microstate. A suitable measure for this lack of info
mation is the entropyS@r rel(t)# associated with the relevan
part of the statistical operator. It is sometimes called
‘‘relevant entropy.’’ This relevant entropy generally varies
time: It changes at a rate

Ṡ@r rel~ t !#5k la~ t !ġa~ t !. ~31!

Within our approximations—perturbation theory and Ma
kovian limit—this rate may be evaluated by inserting t
transport equation~29!. Its first term does not contribute t
the change of relevant entropy; only its second term yield
nontrivial contribution

Ṡ@r rel~ t !#5k Mca~ t !l
c~ t !la~ t !>0. ~32!

The relevant entropy thus increases monotonically, reflec
dissipation and irreversibility of the macroscopic dynami
It stays constant if and only if the second term in Eq.~29!
vanishes~the ‘‘adiabatic limit’’!.

Of course, our finding represents one particular case
the more generalH theorem. That the relevant entropy ca
never decrease is a direct consequence of the Marko
limit and hence holds true whenever the system exhibit
clear separation of time scales@12#.

D. Effective Hamiltonian

The nondissipative part of the macroscopic dynamics
encoded entirely in the first term of Eq.~29!. So in the adia-
batic limit, which we shall consider from now on, the tran
port equation simplifies to

ġa
ad~ t !5 i „r rel~ t !uLeff~ t !Ga…. ~33!

This is very similar to the original equation of motion~2!,
yet with r replaced byr rel andL replaced byLeff .
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Here we make a special choice for the selected obs
ables, one that will directly lead to the renormalizati
group. We presume that we are interested in features of
macroscopic system~for example, its long-wavelength prop
erties! that can be represented by observables acting me
in some subspace of the original Hilbert space~e.g., in the
subspace spanned by all many-particle states with mom
below a given cutoff!. Let the operator that projects the orig
nal Hilbert space onto this selected subspace be denote
P and its complement byQ512P. Selected observables a
then all those of the formPAP, with A being an arbitrary
Hermitian operator. This choice of relevant observab
gives rise to a particularly simple representation of the R
ertson projector,

PA5PAP1
tr~QA!

trQ
Q ; A, ~34!

which no longer varies in time.
We now decompose the microscopic HamiltonianH into

a nonmixing ‘‘free’’ part

H ~0!5PHP1QHQ ~35!

and a mixing ‘‘interaction’’

V5PHQ1QHP ~36!

and split the Liouvillian correspondingly. Since

@L~0!,P#50, ~37!

this decomposition is suitable for perturbation theory. W
the property

PVP50 ~38!

we can immediately evaluate Eq.~20! to obtain

dL5\21@dH,* #, ~39!

wheredH is given by

dH5
i

2\E0
`

dt @V,V~t!#

52
1

2\FV, 1

L~0! VG1 i
p

2\
@V,d~L~0!!V#. ~40!

This yields then

PLeffPA5\21@Heff ,PAP# ; A, ~41!

where we have identified the effective Hamiltonian

Heff5PHP1S , ~42!

which is not just the projectionPHP of the original Hamil-
tonian, but contains an extra term

S52
1

2\H PHQ 1

L~0! QHP1H.c.J
1

p

2\
$ iPHQ d~L~0!! QHP1H.c.% ~43!

stemming fromdH.
v-

he

ly

ta

by

s
-

In S those contributions that involved(L(0)) may be
omitted as long as theP andQ sectors of Hilbert space ar
associated with clearly distinct energies. Our result for
effective Hamiltonian, which we have obtained within th
general framework of transport theory, is very similar to t
Bloch-Feshbach formulaknown in the theory of nuclear dy
namics@21# or to Anderson’spoor man’s scaling@14#. Be-
low we wish to demonstrate how this result can be utilized
derive renormalization-group equations for a variety
physical systems.

V. RENORMALIZATION GROUP
FOR INTERACTING QUANTUM GASES

A. Hamiltonian and ground state

As an illustration of the above general result we sh
investigate the low-temperature properties of interact
quantum gases, i.e., the effective dynamics of low-ene
excitations above their many-particle ground state. We
sume the microscopic dynamics of the gas to be governe
a Hamiltonian of the form

H5Hkin1V2→2

5(
k

ek :ak
†ak :1

1

4 (
i , j ,k,l

^ lkuVu j i &6 :al
†ak

†ajai : ,

~44!

with kinetic energyHkin and a two-body interactionV2→2.
The single-particle energiesek include the chemical poten
tial. Annihilation and creation operators obe
@ai ,aj

†#75d i j for bosons~upper sign! or fermions ~lower
sign!, respectively.

Each term in the Hamiltonian is normal ordered (: :) wi
respect to the noninteracting many-particle ground state.
bosons this ground state has all particles in the lowe
energy, zero-momentum single-particle mode, while for f
mions it consists of a filled Fermi sea with all momentu
modes occupied up to some Fermi momentumKF . ~For sim-
plicity, the Fermi surface will be taken to be spherical.! The
explicit normal ordering of the Hamiltonian is redundant
the bosonic case. In the fermionic case, on the other han
means shuffling all operators that annihilate the fermio
vacuum (ai for states above the Fermi surface,ai

† for states
below the Fermi surface! to the right and all others (ak

† for
states above,ak for states below the Fermi surface! to the
left, thereby changing sign depending on the degree of
permutation.

We will assume that, at least to a good approximation,
essential features of the ground state survive even in
presence of interaction. More specifically, we will assum
that in the case of interacting bosons the ground state still
most particles in modes with zero, or at least very sm
momentum and that in the case of interacting fermions th
still exists a well-defined Fermi surface. Low-energy exci
tions then correspond to the promotion of bosons from sm
to some slightly higher momentum or of fermions from ju
below the Fermi surface to just above it@22#. At low tem-
perature the regions of interest in momentum space are th
fore the vicinity of the origin~bosons! or the vicinity of the
Fermi surface~fermions!, respectively.
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B. Mode elimination

We now wish to devise a systematic procedure for foc
ing onto these regions of interest. To this end we cons
effective theories~i! in the bosonic case for modes within
sphere around the origin, of radiusL, and~ii ! in the fermi-
onic case for modes within a shell inclosing the Fermi s
face, of mean radiusKF and thickness 2L ~whereL!KF).
Whereas in the limit of largeL one recovers the original, ful
theory, the opposite limitL→0 yields the desired low-
energy effective theory. In order to interpolate between th
two limits we proceed in infinitesimal steps. We lower t
cutoff from some givenL(s) to

L~s1Ds!:5exp~2Ds!L~s!, Ds>0, ~45!

with Ds infinitesimal, thereby discarding from the theo
momentum modes pertaining to an infinitesimal shell~in the
fermionic case, two shells! of thicknessDL5L(s) Ds. We
determine the effective dynamics of the remaining mod
then eliminate the next infinitesimal shell, again determ
the effective dynamics of the remaining modes, and so
After each infinitesimal step we obtain a new effecti
Hamiltonian with slightly modified coupling constant
These may also include couplings that had not been pre
in the original theory: In fact, the mode elimination proc
dure will typically generate an infinite number of such co
plings. But in many cases only a few coupling constants w
change appreciably and thus suffice to study the phys
system at hand. How these coupling constants evolve as
flow parameters increases and hence the cutoffL(s) ap-
proaches zero can then be described by a small se
coupled differential equations. Modulo trivial scaling, the
are therenormalization-group equationsof the theory.

At a given cutoffL the many-particle Hilbert space~Fock
space! for bosons is spanned by the particle-free vacu
u0b& and alln-particle states (n51, . . . ,̀ )

uk1•••kn&})
i51

n

a†~k i !u0b&, uk i u<L, ~46!

where the$k i% denote the particle momenta and$a†(k i)% the
associated bosonic creation operators.

The fermion Fock space, on the other hand, is spanne
the filled Fermi sea~fermionic vacuum! u0 f& and all its ex-
citations which have particles above the Fermi surface an
missing particles~‘‘holes’’ ! below it, all within a shell of
thickness 2L. In order to cast this into a mathematical fo
mulation it is convenient to change coordinates, from
true particle momenta$K i% to little ~‘‘quasiparticle’’! mo-
menta

k i :5~ uK i u2KF! K̂ i ~47!

and additional discrete labels

s i :5sgn~ uK i u2KF!. ~48!

This coordinate transformationK→(k,s) is invertible ex-
cept for modes that lie exactly on the Fermi surface. Sta
above the Fermi surface are labeleds51, while those below
-
er
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are labeleds521. The allowed excitations in fermion Foc
space then have the form (n51, . . . ,̀ )

uk1
6
•••kn

6&})
i51

n

@u~s i !a
†~k i ,s i !

1u~2s i !a~2k i ,s i !#u0 f& ,

uk i u<L, ~49!

where the$k i
6% denote the momenta of particles (1) or

holes (2), respectively, and$a†% and $a% the associated
fermionic creation and annihilation operators, respective
For simplicity, we have omitted any spin quantum numbe

It is now obvious which form the projection operator w
have that is associated with the infinitesimal cutoff reduct
~45!: If applied to any of the excitations~46! or ~49! it will
simply multiply the respective state by a product ofu func-
tions) iu(L2eDsuk i u) to enforce the new cutoff constraint

C. Modification of the two-body interaction

Each mode elimination will yield an effective Hami
tonian that will generally contain a slightly altered mas
chemical potential, two-body interaction, etc., and possi
new interactions such as an effective three-body interact
Here we shall restrict our attention to the modification of t
two-body interaction. This modification is entirely due to th
extra termS @Eq. ~43!# in the effective Hamiltonian,

S52
1

32\H (
a,b,c,d

(
i , j ,k,l

^ lkuVu j i &6^dcuVuba&6

3P:al
†ak

†ajai :Q
1

L~0! Q:ad
†ac

†abaa :P1H.c.J ,

~50!

where to the given order in perturbation theoryL(0) just
coincides withLkin . The two projectorsP at both ends of the
operator product ensure that all external momenta lie be
the new, reduced cutoff, whereas the projectorsQ in the
center force at least one internal momentum to lie in t
infinitesimal shell which has just been eliminated. Therefo
at least one pair of field operators must pertain to the eli
natedQ modes and hence be contracted. The product of
remaining six field operators can then be rearranged with
help of Wick’s theorem to yield a decomposition

S5S61S41S21S0 , ~51!

eachSn being a normal-ordered product ofn field operators.
The various terms shift the ground-state energy (n50);
modify the mass, the chemical potential, or more gener
the form of the single-particle dispersion relation (n52);
modify the two-body interaction (n54); and generate a new
effective three-body interaction (n56).

As we want to focus on the modification of the two-bod
interaction, we consider only the term withn54. Neglecting
the energy of the external modes we find for boso
(\51)
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D^ lkuVu j i &152DF(
a,b

1

2~ea1eb!
^ lkuVuba&1^abuVu j i &1G

~52!

and for fermions

D^ lkuVu j i &25D lku j i
~ZS!1D lku j i

~ZS8!1D lku j i
~BCS! , ~53!

with

D lku j i
~ZS!52DF(

a,b

u~sa!u~2sb!2u~2sa!u~sb!

ea2eb

3^ lauVubi&2^bkuVu ja&2G , ~54!

its cross term

D lku j i
~ZS8!52Dklu j i

~ZS! , ~55!

and

D lku j i
~BCS!52DF(

a,b

u~sa!u~sb!2u~2sa!u~2sb!

2~ea1eb!

3^ lkuVuba&2^abuVu j i &2G . ~56!

TheD in front of the sums signifies that at least one of t
internal modes (a,b) must lie in the eliminated shell. In th
bosonic case the modification of the two-body interact
can be associated with a one-loop ‘‘ladder’’ diagram. In t
fermionic case, on the other hand, there are three dis
contributions which, with hindsight, may be identified wi
‘‘zero sound’’ ~ZS,ZS8) and BCS diagrams@11#. The ZS
contribution and its cross term ZS8 account for particle-hole
excitations (sa561,sb571), while the BCS term de-
scribes two-particle (sa5sb511) or two-hole
(sa5sb521) excitations.

The above formulas serve as the starting point for
investigation of a variety of specific physical systems. W
their help one can derive such diverse results as the one-
renormalization-group equation for an interacting Bose g
the one-loopb function of f4 theory, the screening o
fermion-fermion interactions, or the BCS instability. Deta
of these applications are presented in the following secti

VI. EXAMPLES

A. Bosons with point interaction

Our first example pertains to spinless bosons with a p
interaction (d function potential in real space!

^ lkuVu j i &15
2U

V
dki1k j ,kk1kl

, ~57!

with the Kronecker symbol enforcing momentum conser
tion, V being the spatial volume, andU the coupling con-
stant. Provided the magnitude of the external momentak i
and k j is negligible compared to the cutoffL, momentum
conservation implies that the internal modesa,b mustboth
n
e
ct

e

op
s,

.

t

-

lie in the eliminated shell, and henceea5eb5eL . Applica-
tion of the general formula~52! then yields

DU52
U2

2VeL
DF (

ukau,ukbu<L
dki1k j ,ka1kbG , ~58!

where the sum

DF (
ukau,ukbu<L

dki1k j ,ka1kbG'DF (
ukau,ukbu<L

dkb ,2kaG
5 (

ukauP[L2DL,L]
1 ~59!

simply counts the number of eliminated states. For a sph
cal cut in momentum space this number of states is given

(
ukauP[L2DL,L]

15r~eL!
deL

dL
DL, ~60!

with r(eL) denoting the density of states at the cutoff. Wi
DL5L Ds we thus obtain the flow equation

DU52
dlneL

dlnL

r~eL!

2V
U2Ds. ~61!

For a dilute gas of nonrelativistic bosons in three spa
dimensions, with massm, dispersion relationeL5L2/2m,
and density of statesr(eL)5VmL/2p2 the flow equation
reduces to

DU52
mL

2p2U
2Ds. ~62!

By its very definition the sequence of effective theories
tains complete information about the system’s low-ene
dynamics. Observables pertaining to this low-energy dyna
ics are therefore unaffected by the successive mode elim
tion and hence independent ofs. For example, the scatterin
length @23#

a5
m

4pFU~s!2U~s!2E
upu<L~s!

d3p

~2p!3
m

p2G ~63!

stays constant under the flow~62!, as thes dependence of the
parametersU andL just cancels out~up to third-order cor-
rections!.

B. The link to f4 theory

There is an interesting relationship between the result~61!
and the one-loopb function for realf4 theory. Thef4

Hamiltonian describes the dynamics of coupled anharmo
oscillators. It reads, in three spatial dimension
H5H (0)1V with kinetic energy

H ~0!5
1

2E d3x:@p~x!21u¹f~x!u21m2f~x!2#:

5(
k

ek ak
†ak ~64!

and interaction



e

hi
:)

op
ila

st

g
s

e
ct

on

nd

y
ry
edi-

-

en-

um

e

er
-

n-
ne
ivi-

p

5154 55JOCHEN RAU
V5
g

4!E d3x f~x!4

5
g

4!V (
k1 ,k2 ,k3 ,k4

)
a51

4
1

A2eka

~aka
1a2ka

† !d(ki ,0
.

~65!

Herem denotes the mass,V the spatial volume,g the cou-
pling constant, andek the single-particle energy

ek5Ak21m2. ~66!

The field f and its conjugate momentump are time-
independent~Schrödinger picture! operators that satisfy th
commutation relations for bosons, anda,a† are the associ-
ated annihilation and creation operators, respectively. W
the kinetic part of the Hamiltonian is normal ordered (:
the interaction is not.

When expressed in terms of annihilation and creation
erators the Hamiltonian takes on a form that is very sim
to that of the quantum gas Hamiltonian~44!. More precisely,
the f4 Hamiltoniancontainsa Bose gas Hamiltonian with
two-body interaction matrix element

^ lkuVu j i &15S 42D g

4!VAe ie jeke l
dki1k j ,kk1kl

. ~67!

The derivation of a flow equation forg can now proceed in
the same vein as that forU, again starting from Eq.~52!.
Now, however, apart from 2→2 particle scattering, thef4

Hamiltonian with its additional interactionsa†a†a†a,
a†a†a†a†, etc., also permits 2→4 and 2→6 scattering.
Therefore, in Eq.~52! the intermediate state may be not ju
uab&, but alsouabik&, uabil&, uab jk&, uab jl&, or uabi jkl&.
As long as the magnitude of the external momenta is ne
gible compared to the cutoff, it is in all six case
ea5eb5eL and

^ lkuVu•••&1^•••uVu j i &15
g

4VeL
2 ^ lkuVu j i &1dkb ,2ka

.

~68!

Hence in order to account for the larger set of allowed int
mediate states we merely have to introduce an extra fa
6 and obtain thus

Dg52
dlneL

dlnL

3r~eL!

8VeL
2 g2Ds. ~69!

ForL@m it is eL5L, r(eL)5VeL
2 /2p2 and the flow equa-

tion reduces to

Dg52
3g2

16p2Ds, ~70!

in agreement with the well-known one-loop result for theb
function off4 theory @24,25#.

C. Screening of fermion-fermion interactions

We consider nonrelativistic fermions in spatial dimensi
d (d>2) that interact through a two-body interaction
le
,

-
r

li-

r-
or

^ lkuVu j i &25@V~q!dslsidsksj2V~q8!dsksidslsj #dK i1K j ,Kk1K l
,

~71!

duly antisymmetrized to account for Fermi statistics, a
with $sa% denoting the spin quantum numbers andq,q8 the
respective momentum transfers

q:5K l2K i5K j2K k ,

q8:5K k2K i5K j2K l . ~72!

We investigate scattering processes for which

0,uqu,L!uq8u,uK i1K j u,KF . ~73!

In this regime only the ZS contribution~54! can significantly
modify the two-body interaction; its cross term ZS8 @Eq.
~55!# as well as the BCS contribution~56! are suppressed b
a factorL/KF . This can be seen directly from the geomet
of the Fermi surface. The three constraints on the interm
ate state—~i! bothKa andKb lie in the cutoff shell of thick-
ness 2L; ~ii ! more stringently, one of them lie in the infini
tesimal shell to be eliminated; and~iii ! Ka2Kb52q8
~ZS8) or Ka1Kb5K i1K j ~BCS!, respectively—reduce the
momentum space volume available to the internal mom
tum Ka to O(KF

d22LDL). In contrast, foruqu;L the ZS
contribution with its conditionKa2Kb52q allows a mo-
mentum space volume of the orderKF

d21DL.
To evaluate the ZS contribution at some given moment

transferq, we first define the angleq between2q and the
internal momentumKa ,

cosq[z:52
q•Ka

uquuKau
, ~74!

change coordinates from original (K ) to little (k) momenta,
and write, up to corrections of orderuqu/KF ,

ea2eb5vF~ uKau2uKbu!5vF~saukau2sbukbu!

5vFuquz, ~75!

with vF denoting the Fermi velocity. Next we note that th
term with u(sa)u(2sb) and the term withu(2sa)u(sb)
yield identical contributions; therefore, it suffices to consid
only the first term and then multiply it by 2. Finally, assum
ing that in the interaction matrix element~71! the cross term
is negligible,

uV~q8!u!uV~q!u, ~76!

the two matrix elements in Eq.~54! can simply be replaced
by V(q)2 modulo Kronecker symbols for spin and mome
tum conservation. By virtue of these Kronecker symbols o
of the two summations over internal modes collapses tr
ally, leaving

DV~q!52
2

vF
DF(

a
u~L2ukau!u~ ukau2uquz1L!

3
u~sa!u~ uquz2ukau!

uquz GV~q!2. ~77!

Here the first twou functions explicitly enforce the shar



om

55 5155TRANSPORT THEORY YIELDS RENORMALIZATION- . . .
cutoff constraint for bothka andkb (ukau,ukbu<L), while the
latter two u functions enforcesa51 andsb521, respec-
tively. Under these constraints it is alwaysqP@0,p/2) and
hencez.0.
d
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ts
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n
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e
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n

iv

st
nc
n

;
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s

The above equation can be immediately integrated fr
cutoff L@uqu,ukau ~symbolically, L→`) down to
L!uqu,ukau ~symbolically,L→0), to yield the total modifi-
cation of the two-body interaction
1

Veff~q!
2

1

Vbare~q!
5
2

vF
(
a

u~L2ukau!u~ ukau2uquz1L!u~sa!u~ uquz2ukau!
uquz U

0

`

. ~78!
col-
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At the lower bound (L→0) the various conditions impose
by theu functions cannot all be satisfied simultaneously a
therefore the product ofu functions vanishes. At the uppe
bound (L→`), on the other hand, the cutoff constrain
imposed by the first twou functions are trivially satisfied and
thus can be omitted. In this case the sum overa is evaluated
by turning it into two integrals, one over a radial variab
such asukau or ea , the other over the solid angle. At a give
solid angle and hence givenz, the fourthu function restricts
the radial integration to the rangeukauP@0,uquz# or, equiva-
lently, eaP@0,vFuquz#. This energy interval in turn corre
sponds to a number„r(eF)vFuquz… of states,r(eF) being the
density of states at the Fermi surface.~The density of states
takes any spin degeneracy into account.! The integration
over the solid angle is constrained to a semisphere, du
qP@0,p/2), and hence reduced by a factor 1/2 as compa
to a full-sphere integration. Altogether we obtain

1

Veff~q!
2

1

Vbare~q!
5
2

vF

1

2
r~eF!vFuquz

1

uquz
5r~eF!

~79!

and thus

Veff~q!5F 1

Vbare~q!
1r~eF!G21

. ~80!

This result describes the well-known screening of fermio
fermion interactions@26#.

D. BCS instability

Our last example pertains to fermions with an attract
pairing interaction

^ lkuVu j i &252V dK j ,2K i
dK l ,2Kk

@dslsidsksj2dsksidslsj # ,
~81!

which is the simplest form of BCS theory@27#. Due to the
pairing conditionK j52K i , K l52K k it is impossible to
satisfy in the ZS and ZS8 terms the requirement that at lea
one of the internal modes be in the eliminated shell. He
only the BCS term~56! can modify the coupling constant. I
the BCS term there are contributions withu(sa)u(sb) and
u(2sa)u(2sb), respectively, which yield identical results
therefore, it suffices to consider only the first contributi
and then multiply it by 2. The pairing condition implie
ea5eb5eL , which for modes in the upper (s511) elimi-
d

to
d

-

e

e

nated shell is given byeL5vFL. The eliminated shell itself
covers an infinitesimal energy interval of width (vFLDs),
which in turn corresponds to a number„r(eF)vFLDs… of
states. Of the two summations over internal modes one
lapses trivially due to momentum and spin conservati
leaving

DV5
V2

2vFL
DF(

a
u~sa!G

5
V2

2vFL
r~eF! vFLDs5

r~eF!

2
V2Ds. ~82!

From this flow equation for the BCS couplingV(s) we
immediately conclude that as long as the initial coupli
V(0) is positive,V(s) diverges ass→`. This indicates the
occurrence of binding~‘‘Cooper pairs’’! at very low tem-
peratures. Furthermore, we can again convince ourselves
the sequence of effective theories retains complete infor
tion about the system’s low-energy dynamics: Low-ene
observables such as the zero-temperature gap@27#

D052L~s!expF2
2

r~eF!V~s!G ~83!

do not depend on the flow parameters and are thus unaf-
fected by the successive mode elimination.

VII. CONCLUSION

We have succeeded in linking renormalization to tra
port theory. Our line of argument proceeded from the ex
microscopic dynamics, via the Nakajima-Zwanzig projecti
technique, to a macroscopic transport equation for sele
expectation values and then, via second-order perturba
theory, Markovian limit, choice of the Robertson projecto
and a suitable rearrangement of terms in the transport e
tion, to the approximate effective Hamiltonian that gover
the nondissipative part of the macroscopic dynamics.
investigated the ramifications of this result for the low
energy dynamics of interacting quantum gases: Contrac
the set of selected expectation values by discarding it
tively those observables that pertain to short-wavelength
citations, we obtained a sequence of effective Hamiltoni
that describe the dynamics on successively larger len
scales. We then focused on the two-body interaction in th
effective Hamiltonians and convinced ourselves, in seve
rather diverse applications, that it varies in accordance w
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one-loop renormalization-group equations. We have t
substantiated our original claim that renormalization-gro
equations can be obtained within the Nakajima-Zwanzig p
jection approach and hence renormalization can be em
ded into the general mathematical framework of transp
theory.

There remain many open questions worth investigati
Clearly, a unified theoretical framework for dissipative tran
d-

,

lds
. G

ra
s
p
-
d-
rt

.
-

port and renormalization will have to prove its merits in ne
applications where the conventional approaches fail: for
ample, when time scales are no longer well separated and
Markovian limit ceases to be justified; or when, in the cou
of successive mode elimination, one starts to discard st
with a finite population, thus introducing dissipation into th
effective macroscopic dynamics. It is my hope that t
present paper will help stimulate research efforts in these
related directions.
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