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Transport theory yields renormalization-group equations
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We show that dissipative transport and renormalization can be described in a single theoretical framework.
The appropriate mathematical tool is the Nakajima-Zwanzig projection technique. We illustrate our result in
the case of interacting quantum gases, where we use the Nakajima-Zwanzig approach to investigate the
renormalization-group flow of the effective two-body interactif®1063-651X97)02205-9

PACS numbgs): 05.70.Ln, 05.60tw, 11.10.Gh, 71.16-w

[. INTRODUCTION transport theory for such an interacting fermion system one
must performtwo consecutive coarse-graining procedures:
The basic theme of statistical mechanics—how to obtain dirst eliminating short-wavelength modes to arrive at an ef-
system’s macroscopic properties from the laws of its underfective (renormalizedl theory for quasiparticle excitations
lying microscopic dynamics—appears in many variationsclose to the Fermi surface, which typically feature effective
Two out of many examples are the problem of determiningnasses and screened interactihsl1], and then discarding
critical exponents at second-order phase transitions and ttibeir statistical correlations to obtain an Uehling-Uhlenbeck-
problem of deriving macroscopic transport equations. Theaype transport equation for the single-quasiparticle distribu-
former is usually tackled with the help of Wilson’s renormal- tion. The description of the macroscopic dynamics therefore
ization group[1-4], a mathematical tool that allows one to requires an appropriate combination of renormalization and
iteratively eliminate short-wavelength modes and thus to arstatistical coarse graining.
rive at effective(“renormalized”) theories that describe the Clearly, the two coarse grainings do not commute; the
dynamics on successively larger length scales. The latter hdatter (statistical coarse grainingis contingent upon the
been tackled in various ways, among them the so-called prdermer (renormalization For instance, the renormalization-
jection technique by Nakajimgb], Zwanzig[6], Mori [7], group flow yields screeninfdl1] and hence renders the inter-
and Robertsori8]. Eliminating unmonitored, rapidly oscil- action range finite, thus generating that separation of scales
lating degrees of freedom from the equation of motion bywhich is indispensable for the subsequent derivation of a
means of suitable projections in the space of observables, thdarkovian transport theorj12]. But what happens if scales
projection technique yields closdbut generally no longer converge rather than separate upon renormalization? How
Markovian “transport equations” for the selected macro- then are renormalization and statistical coarse graining best
scopic degrees of freedom. combined? More generally, what is the connection between
While the two methods—Wilson’s renormalization group effective dynamics and dissipation? Does their interplay lead
and Zwanzig's projection technique—may appear quite difto interesting new phenomena? To what extent can
ferent in their mathematical formulation, they are very simi-renormalization-group techniques be applied to study non-
lar in spirit. In both cases one strives to focus on selecte@quilibrium, dissipative processes? How do transport coeffi-
features of the dynamidgts infrared limit or the evolution of cients change under renormalization-group transformations?
only few macroscopic observabjedeemed interesting and Is it always true that transport coefficients are renormalized
to this end devises a systematic procedure for eliminating alby simply trading bare masses and couplings for their renor-
other, “irrelevant” degrees of freedorta procedure com- malized counterparts, while keeping the form of the func-
monly referred to as “coarse graining” Discarding thus tional dependence on these parame{d3]? In addition,
unnecessary baggage from the problem at hand, one susemewhat speculative, are there “universality classes” of
ceeds in describing the interesting features of the dynamidsansport theories? These and other issues might be best ap-
without ever having to solve the complete, and far too comproached in a unified mathematical framework that encom-
plicated, microscopic theory. This similarity of the basic ap-passes both renormalization and dissipative transport as spe-
proach suggests that renormalization and the transition froroial cases.
microdynamics to macroscopic transport are in fact closely There has already been some progress towards such a
related procedures and that it should be possible to cast theumified picture. The success of Anderson’s “poor man’s
into a common theoretical framework. scaling” approach to the Kondo problerfild], Seke's
Building a bridge between renormalization and transporprojection-method treatment of the nonrelativistic Lamb shift
theory would not only be satisfying conceptually, but would[15], the calculation of the one-loop renormalization ¢t
also help tackle a variety of practical problems. Often thetheory by means of Bloch-Feshbach technigLi), and a
macroscopic evolution of a complex quantum system exhibrecent renormalization-group study of interacting fermion
its both dissipationand modified, renormalized dynamical systems within a purely algebraic framewdrk7] suggest
parameters such as effective masses or effective interactiorthat one can formulate Wilson’s renormalization in terms of
Let us consider, for example, liquiHe or nuclear matter projections in Hilbert space, completely analogous to the
away from equilibrium. In order to formulate a macroscopicprojections in the space of observables, which, in the
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Nakajima-Zwanzig approach, lead to macroscopic transpotitlartree-Fock equations. As | will show later in this paper,
equations. the same projection technique allows one to derive
In the present paper | wish to make this analogy evemenormalization-group equations.
more explicit. 1 will show that one can actually obtain  The projection technique is based on a clever insertion of
renormalization-group equations within the Nakajima-projection operators into the equation of moti@. A pro-
Zwanzig projection approach and that hence renormalizatiojection operator is any operat@® that satisfiesP?>="P; its
can be embedded into the general mathematical frameworomplement, which is also a projection operator, is denoted
of transport theory. After a brief introduction to the projec- by Q:=1—P. The projection operators, like the Liouvillian,
tion techniqueSec. I) and a discussion of various approxi- are so-called superoperators: they do not act in Hilbert space
mations(Sec. ll)) | shall isolate the dissipative and nondis- but in the space of observablésiouville spacé. For our
sipative parts of the macroscopic dynamics and show that theurposes we consider projectors that project arbitrary vectors
latter is governed by an effective, renormalized Hamiltonianin Liouville space onto the subspace spanned by the unit
(Sec. V). For illustration, these general ideas are then apeperator and by the relevant observajles}, i.e., for which
plied to studying the low-energy dynamics of interacting
quantum (Bose and Fermi gases, in particular the PA=A < AespaqlG,}. )
renormalization-group flow of their effective two-body inter-

action(Secs. V and V). Finally, | shall conclude with a brief FOr simplicity we assume that the Hamiltonian and hence the
summary in Sec. VIL. Liouvillian, as well as the relevant observables, are not ex-

plicitly time dependent. In contrast, we allow the projector to
depend on the expectation valugg(t)} of the relevant ob-
servables, thus making it an implicit function of time:
In this section | give a very brief introduction to the P(t)=7g,(t)], with the sole restriction that for any observ-
Nakajima-Zwanzig projection techniqlie—8]. More details ableA,
can be found in several textbooKES] and in recent reviews g
[12,19.
When studying the dynamics of a macroscopic quantum (p(t) aP(t) A) =0. ©®)
system away from equilibrium, one typically monitors the
evolution of the expectation values For the time being we admit any projector that satisfies the
two constraints(5) and (6). Later, in Sec. IVB, we shall
ga(t):=tr[p(1)G,] (1) make a specific choice fdP(t).
Now let 7(t’,t) be the(supejoperator defined by the dif-
ferential equation

II. PROJECTION TECHNIQUE

of only a very small set of selectétirelevant”) observables
{G,}. These evolve according to

. J
9a(H) =i(p(1)| LGy, ) S (D =—1 Q) LO() T, 1), (7)

ith ing th istical he Liouuvilli . " .
with p(t) being the statistical operatof, the Liouvillian with the initial conditionZ(t,t)=1. It may be pictured as

Li=h " H,*] (3)  describing the evolution of the systenireelevantdegrees of
freedom. With its help the equation of motion for the se-
associated with the HamiltoniaH, and the inner product lected expectation valudg,(t)} can be cast into the—still

(]) defined as exact—form
(A|B):=t{ATB]. 4 9a() =i (p()| P(H) LG,)
The equation of motion in the forrt2) does not constitute a to , ) , )
closed system of differential equations for the selected ex- - fodt (p(t)|P(t) L) T 1) Q1) LGy)
pectation valueqg,(t)}; its right-hand side will generally
depend not just on the selected, but also on all the other +i(p(0)|Q(0)T(0t) (1) LG,) (8)

“irrelevant” degrees of freedom. With the help of the pro-

jection technique to be sketched below, these irrelevant ddor any timet=0. Comparing this form of the equation of
grees of freedom can be systematically eliminated from thénotion with the original form(2) we notice that, apart from
equation of motion, in exchange for non-Markovian andthe replacementg|— (p|P, there are two additional terms:
(possibly nonlinear features of the resulting closed “trans- (i) an integral(*memory”) term, containing contributions
port equation” for the{g,(t)}. Mapping thus the influence of from all times between the initial and the present time, and
irrelevant degrees of freedom onto, among other features, @) a “residual force” term describing the effect of irrel-
nonlocal behavior in time opens the way to the exploitationevant components in the initial state. The physical meaning
of well-separated time scales and hence serves as a goofl both terms can be easily discerned if read from left to
starting point for powerful approximations such as the Mar-right. (i) At time t’'<t relevant degrees of freedofpro-
kovian and quasistationary limits. Indeed, in this fashion ongected out byP) couple via an interaction) to irrelevant
can derive many of the well-known equations of nonequilib-degrees of freedonfprojected out byQ), which subse-
rium statistical mechanics, for example, rate, quantum Boltzguently evolve in time 7) and, due to a second interaction
mann, Master, Langevin-Mori, and even time-dependen{L), acquire relevancy again, thus influencing the evolution
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of the relevant observabl®, at the present time (ii) Irrel-  past one has to reach in order to make predictions for the
evant components in the initial stat®) evolve in time further evolution of the selected observables. If this memory
(7) and, due to interaction4), acquire relevancy at the time is small compared to the typical time scale on which the
present time. selected observables evolve, . < 7, then memory ef-

In many practical applications the irrelevant componentfects can be neglected and predictions for the selected ob-
of the initial state can be shown to vanish, or else to beservables can be based solely on their present values. One
negligible, in which case the residual force term can bemay then assume that in the memory tegg(t’)~g,(t) and
dropped from the equation of motion. What remains then idence replace
the desired closed system @bossibly nonlinear coupled

integro-differential equations for the selected expectation Plga(t)]—=Plga(t)],
values{g,(t)}. The principal feature of these closed equa- , ,
tions is that they are non-Markovian: Future expectation val- (p(t)[Pt") = (p(O)| (D). (14

ues of the selected observables are predicted not just on ”1%- , T
. . : O is is the Markovian limit.
basis of their present values, but based on their entire history. Closely related to the Markovian limit is the quasistation-

ary limit: At timest> 7,0, it N0 longer matters for the dy-
IIl. APPROXIMATIONS namics when exactly the evolution started, and hence in Eq.
A. Second-order perturbation theory (8) the integration over the system’s history may just as well
extend from—oo to t rather than from O to. In the Markov-
ian and quasistationary limits the equation of motion, to sec-
ond order and without residual force, simplifies to

9a(t) =i (p()|P(1) LG)

Often the Liouvillian can be split into a free part and an
interaction part,

L=L04y, 9)

corresponding to a decompositibt= H(®+ V of the Hamil- »
tonian. Provided free evolution does not mix relevant and —f dr (p(t)|P(H V(U (0,1)VG,) .
irrelevant degrees of freedom, i.e., provided 0
(15
[£©,P(t)]=0, (10)

This approximate transport equation for g, (t)} shall be
then in the memory termPLQ=PVQ and QLP=QVP;  the basis of our further investigations.
hence the memory term is at least of second order in the
interaction. To second order, therefore, one can simply re- IV. ANALYSIS

lace

P A. Reformulation of the transport equation

Q)T ,HQL) — Q)T ,H Q) (1) Starting from the approximate transport equatibs), we

eventually wish to discern two of the main features of mac-

roscopic transport(i) dissipation and(ii) the modification

(“renormalization”) of the effective interaction. The latter

will then, in Sec. V, lead on to the consideration of

renormalization-group equations.

TOM 1) — UM ) =exdi(t—t')LO]. (12 _ To this epd we firs; split the. free evolution operator into
its symmetric and antisymmetric parts

U90,7)=3{u20,n)+U2(7,0]
ga(1) =i (p(D)|P(H) LGy) + U0, - U (0], (16)

where 79) is a time-ordered exponential @£(® Q. Using
Eqg. (10) and Q(t,) Q(t1) = Q(t,), all the Q's appearing in
7% can be shuffled to the left and absorbed ir@t’),

allowing one to replace further

One thus obtain$without residual force

- fotdr (p(t—71)|P(t—7)VQ(t— U0, VG,) .  Use
(13 jwdr [UO0,7)+UO(7,0]=275(L?) (17)
0

B. Markovian limit in the symmetric part, and in the antisymmetric part exploit

We have seen that predictions of future expectation valuethe liberty(thanks to the Markovian limijtto insert free evo-
of the selected observables generally depend in a compllution operator€£®(0,7) and 4% (7,0) in front of P(t) or
cated manner on both their present expectation values arfd,, respectively. We thus obtain
their past history. There are thus two distinct time scaligs:
the scaler,, or several scalefr,.}, on which the selected : _
expectation value$g,(t)} evolve and(ii) the memory time 9a(D) =i (p(DIP() Ler(t)Ga)

Tmem Which characterizes the length of the time interval that —m(p(H)|P(OVO(L) S(LO)VG,), (18
contributes significantly to the memory integral. Loosely
speaking, the memory time determines how far back into thavhere
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Le(t) =L+ 6L(1) (19 trast to other frequently used projectors such as the Mori
projector [7], it permits the derivation of closed transport
denotes gpossibly time-dependenteffective™ Liouvillian equations valid arbitrarily far from equilibrium. We shall use

determined by this projector throughout the remainder of the paf@ed for
| brevity, we shall immediately drop the subscripy.
__ _ With the Robertson projector the transport equativd)
oL(1) Zfo dr{[V(7),V]=[P()V7)P(1), P(t) VP(1) ]} takes the form
(20) .
and ga(t):i(PreI(t)l‘Ceﬁ(t)Ga)"'Mca(t”\c(t): (29
where
V(r)=h"[V(r),*] (21
o . s (0 t)
is the commutator with the interaction-picture operator Mea(t): = m(Q()VG.; 6(L™) Q(1)VG,) (30)
V(7): =U9(0,7)V. 22) is a matrix whose eigenvalues are all real and non-negative.

In this formulation it is particularly easy to distinguish the

making a suitable choice for the yet undetermined projectolVill show, the second term in E¢29) is solely responsible
P(t). for dissipation, whereas the first term yields nondissipative

dynamics governed by a modifigdenormalizedl effective

B. Robertson projector Hamiltonian.

Associated with the expectation valu@s of the selected

. . . . C. Dissipation
observables is, at each tinhga generalized canonical state

An observer who monitors only the selected degrees of

prei():=Z(t) " Texgd —\3(1)G,], (23)  freedom does not have complete information about the sys-
_ N ) tem’s microstate. A suitable measure for this lack of infor-
with the partition function mation is the entropys p,e(t)] associated with the relevant

part of the statistical operator. It is sometimes called the
“relevant entropy.” This relevant entropy generally varies in

and the Lagrange parametefs®(t)} adjusted such as to (me: It changes at a rate
satisfy the constraints . :
b Spre(t) =k )\a(t)ga(t)- (31)

M pre()Gal =Galt). @9 Within our approximations—perturbation theory and Mar-
We have used Einstein’s convention: Repeated upper arpvian limit—this rate may be evaluated by inserting the
lower indices are to be summed over. The generalized cdransport equatiori29). Its first term does not contribute to
nonical statep(t), among all states that satisfy the con- the change of relevant entropy; only its second term yields a
straints (25), is the one that maximizes the von Neumannnontrivial contribution

entropy ,
Spre(t) =K Mca(HN (DN (1)=0. (32

Slpl:=—ktr (plnp). (26)
The relevant entropy thus increases monotonically, reflecting

For this reason it may be considered the “least biased” oiissipation and irreversibility of the macroscopic dynamics.
“maximally noncommittal” with regard to the unmonitored |t stays constant if and only if the second term in E2p)
degrees of freedom; it is sometimes called the “relevanianishegthe “adiabatic limit”).
part” of the full statistical operatop(t). Of course, our finding represents one particular case of

There exists a unique time-dependent projeig(t) that  the more generaH theorem. That the relevant entropy can
projects arbitrary vectors in Liouville space onto the sub-never decrease is a direct consequence of the Markovian
space spanned by the unit operator and by the relevant olimit and hence holds true whenever the system exhibits a
servablegG,}, the projection being orthogonal with respect clear separation of time scalgk2].
to the time-dependent scalar product

Z(t): =trexg —\3(1)G,] (24)

1 D. Effective Hamiltonian
(A;B)V:= fo du tpre(t)*ATpre()*"#B].  (27) The nondissipative part of the macroscopic dynamics is
encoded entirely in the first term of E9). So in the adia-

This projectorPg(t) satisfies both condition®) and(6) and, ~ batic limit, which we shall consider from now on, the trans-
moreover, can be shown to yield port equation simplifies to

(p(V)|Pr(t) = (pre(t)] (28) 920 =i (pref( V)] Len() Ga). (33

at all times. This special choice f@X(t), originally proposed This is very similar to the original equation of motig8),
by Robertsori8,20], has the important advantage that in con-yet with p replaced byp, and £ replaced byCq.
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Here we make a special choice for the selected observ- In 3 those contributions that involvé(£(®)) may be
ables, one that will directly lead to the renormalization omitted as long as thE andQ sectors of Hilbert space are
group. We presume that we are interested in features of thassociated with clearly distinct energies. Our result for the
macroscopic systerffor example, its long-wavelength prop- effective Hamiltonian, which we have obtained within the
ertieg that can be represented by observables acting merelyeneral framework of transport theory, is very similar to the
in some subspace of the original Hilbert spdee., in the  Bloch-Feshbach formulknown in the theory of nuclear dy-
subspace spanned by all many-particle states with momentaamics[21] or to Anderson’spoor man’s scaling14]. Be-
below a given cutoff Let the operator that projects the origi- low we wish to demonstrate how this result can be utilized to
nal Hilbert space onto this selected subspace be denoted lgrive renormalization-group equations for a variety of
P and its complement b =1— P. Selected observables are physical systems.
then all those of the forniP AP, with A being an arbitrary
Hermitian operator. This choice of relevant observables V. RENORMALIZATION GROUP

gives rise to a particularly simple representation of the Rob- FOR INTERACTING QUANTUM GASES

ertson projector, o
A. Hamiltonian and ground state

tr(QA)Q vV A (34) As an illustration of the above general result we shall

trQ ' investigate the low-temperature properties of interacting
guantum gases, i.e., the effective dynamics of low-energy
excitations above their many-particle ground state. We as-
sume the microscopic dynamics of the gas to be governed by
a Hamiltonian of the form

PA=PAP+

which no longer varies in time.
We now decompose the microscopic Hamiltonkrinto
a nonmixing “free” part

HO=PHP+QHQ (35 HeHtV,
and a mixing “interaction” 1
V=PHOQ+QHP (36) =§k: ek:aﬁak:+zi‘%l (Ik|VI]ji). :afalaa: |
and split the Liouvillian correspondingly. Since (44)
[£©,P]=0, (37 with kinetic energyH,;, and a two-body interactioW, _,.

The single-particle energies, include the chemical poten-
tial.  Annihilation and creation operators obey
[a ,aJ-T];=5ij for bosons(upper sign or fermions (lower

this decomposition is suitable for perturbation theory. With
the property

PVP=0 (38)  sign), respectively.
. _ . Each term in the Hamiltonian is normal ordered (: :) with
we can immediately evaluate EO) to obtain respect to the noninteracting many-particle ground state. For

1 . bosons this ground state has all particles in the lowest-
oL=h"[oH,*], (39 energy, zero-momentum single-particle mode, while for fer-
where SH is given by mions it consists of a filled Fermi sea with all momentum
modes occupied up to some Fermi momentGg (For sim-
L plicity, the Fermi surface will be taken to be sphericdhe
5H_ﬂfo dr [V.V(7)] explicit normal ordering of the Hamiltonian is redundant in
the bosonic case. In the fermionic case, on the other hand, it
means shuffling all operators that annihilate the fermionic
vacuum §; for states above the Fermi surfaeé,for states
o below the Fermi surfageo the right and all othersa(ﬁ for
This yields then states abovea, for states below the Fermi surfac® the
PLPA=1"[H. ,PAP] V A, (41) left, thergby changing sign depending on the degree of the
permutation.
where we have identified the effective Hamiltonian We will assume that, at least to a good approximation, the
essential features of the ground state survive even in the
Hey=PHP+X, (42 presence of interaction. More specifically, we will assume
that in the case of interacting bosons the ground state still has
most particles in modes with zero, or at least very small,
momentum and that in the case of interacting fermions there
still exists a well-defined Fermi surface. Low-energy excita-
~ 55| PHQZzm QHPHH.C. tions then correspond to the promotion of bosons from small
to some slightly higher momentum or of fermions from just
T © below the Fermi surface to just above[#2]. At low tem-
+ 5 IPHQ 8(L™) QHP+H.c} (43)  perature the regions of interest in momentum space are there-
fore the vicinity of the origin(bosong or the vicinity of the
stemming froméH. Fermi surfacgfermions, respectively.

1

~ A 2 v Zvscow]. @)
26| ' LO 2t '

which is not just the projectioPHP of the original Hamil-
tonian, but contains an extra term

S =
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B. Mode elimination are labeledr=—1. The allowed excitations in fermion Fock

We now wish to devise a systematic procedure for focusSPace then have the form€1, ... )
ing onto these regions of interest. To this end we consider

effective theoriegi) in the bosonic case for modes within a - - .

sphere around the origin, of radids and(ii) in the fermi- ki - -kq >°Ci1:[1 [6(on)al(ki, o)

onic case for modes within a shell inclosing the Fermi sur-

face, of mean radiukg and thickness & (where A <Kg). +6(—op)a(—ki,01)]/05) ,
Whereas in the limit of larg& one recovers the original, full

theory, the opposite limitA—0 vyields the desired low- kil <A, (49

energy effective theory. In order to interpolate between these

two limits we proceed in infinitesimal steps. We lower the where the{kii} denote the momenta of particles-J or

cutoff from some givem\(s) to holes (—), respectively, anda'} and {a} the associated

L fermionic creation and annihilation operators, respectively.

A(st+As):=exp—As)A(s), As=0, (45 For simplicity, we have omitted any spin quantum numbers.

ith As infinitesimal. thereby di dina f he th It is now obvious which form the projection operator will

wit S Infinitesimal, ereby discarding from t € theory have that is associated with the infinitesimal cutoff reduction

momentum modes pertaining to an infinitesimal skiellthe (45): If applied to any of the excitation@}6) or (49) it wil

fermion_ic case, two sheumf thic_knessAA=A(s)_ A.S' We simply multiply the respective state by a productéofunc-
determine the effective dynamics of the remaining mOdestionsH~0(A—eAs|k-|) to enforce the new cutoff constraint.
then eliminate the next infinitesimal shell, again determine ! !

the effective dynamics of the remaining modes, and so on. o _ _

After each infinitesimal step we obtain a new effective C. Modification of the two-body interaction

Hamiltonian with slightly modified coupling constants.  Each mode elimination will yield an effective Hamil-
These may also include couplings that had not been presefnian that will generally contain a slightly altered mass,
in the original theory: In fact, the mode elimination proce- chemical potential, two-body interaction, etc., and possibly
dure will typically generate an infinite number of such cou-new interactions such as an effective three-body interaction.
plings. But in many cases only a few coupling constants willHere we shall restrict our attention to the modification of the
change appreciably and thus suffice to study the physicalvo-body interaction. This modification is entirely due to the

system at hand. How these coupling constants evolve as th&tra term3 [Eq. (43)] in the effective Hamiltonian,
flow parameters increases and hence the cutdf{s) ap-

proaches zero can then be described by a small set of s 1 s
coupled differential equations. Modulo trivial scaling, these -
are therenormalization-group equationsf the theory.

At a given cutoffA the many-particle Hilbert spac€ock

T 30 IkIV|ii).(dclV|ba).
324 a,b,c,di,%J< | |“>—< C| | a>7

Tt 1 Tt
XP:aja,a;a:Q~myQ:aga.apaa:P+H.c.p

space for bosons is spanned by the particle-free vacuum £©)
|0p) and alln-particle statesr{=1, ... »)
(50)
n
lky-- ko) [T al(k)|0p),  |ki|<A, (46)  where to the given order in perturbation theof{® just
=1

coincides withZ,;,. The two projector® at both ends of the
operator product ensure that all external momenta lie below
where the{k;} denote the particle momenta afaf (k;)} the  the new, reduced cutoff, whereas the project@ran the
associated bosonic creation operators. center force at least one internal momentum to lie in that
The fermion Fock space, on the other hand, is spanned bfinitesimal shell which has just been eliminated. Therefore,
the filled Fermi sedfermionic vacuum|[0;) and all its ex-  at least one pair of field operators must pertain to the elimi-
citations which have partiCIeS above the Fermi surface aﬂd/qﬁatedQ modes and hence be contracted. The product of the

missing particles(“holes”) below it, all within a shell of  remaining six field operators can then be rearranged with the
thickness 2. In order to cast this into a mathematical for- he|p of Wick’s theorem to yield a decomposition
mulation it is convenient to change coordinates, from the

true particle momentgK;} to little (“quasiparticle”) mo- S=S+3,+3,+3,, (52)
menta
. eachX , being a normal-ordered product ffield operators.
ki:=(IKi|=Kp) K; (47)  The various terms shift the ground-state energy=0);
modify the mass, the chemical potential, or more generally
and additional discrete labels the form of the single-particle dispersion relation=<2);
modify the two-body interactionn(=4); and generate a new
o =sgn|K;| —Kg). (48)  effective three-body interactiomE&6).

As we want to focus on the modification of the two-body
This coordinate transformatio — (k,o) is invertible ex- interaction, we consider only the term witl+=4. Neglecting
cept for modes that lie exactly on the Fermi surface. Statethe energy of the external modes we find for bosons
above the Fermi surface are labeled 1, while those below (A=1)
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lie in the eliminated shell, and heneg=e,=€, . Applica-
tion of the general formulés2) then yields

a,b 2(€a+
AU=— A Sk +k. , 58
and for fermions 206, |k lfy=n KitKiKathe (58)
A{Ik|Vji >*=Al(lf“si)+Al(lf“si )+A|(|<B\?is) 1 (53  Where the sum
with A ; Ok kgt [ A ; O, .k,
0( )0( ) 0( )0( ) ‘kalv kb‘éA ! ‘kalv kblgA
g —O0p) — — 0 g
Al(kZ“SI): —A 2 a b a b
ab €a™ €p = (59
[kal e [A=AA,A]
X (la|V|bi)_(bk|V|ja)_|, (54)  simply counts the number of eliminated states. For a spheri-
cal cut in momentum space this number of states is given by
its cross term dey
, 1=p(ey) 7o AA, (60
MG =— A (55 lalelA7an.0) dA
and with p(e,) denoting the density of states at the cutoff. With
AA=A As we thus obtain the flow equation
0(oy)0(op)—0(—0,) 0(— 0
AESS=— A s (0a) O( bz)( i )a) (—op) AU:_dInéA pex) oae .
8D €a™ €b dinA 20 '
x(lk|V|ba)_(ab|V|ji)_|. (56) For a dilute gas of nonrelativistic bosons in three spatial

dimensions, with massn, dispersion relatiore, = A?%/2m,
and density of statep(e,)=0mA/27? the flow equation

The A in front of the sums signifies that at least one of the oq,,ces to

internal modes g,b) must lie in the eliminated shell. In the

bosonic case the modification of the two-body interaction

can be associated with a one-loop “ladder” diagram. In the AU=— WUZAS-
fermionic case, on the other hand, there are three distinct

contributions which, with hindsight, may be identified with By its very definition the sequence of effective theories re-
“zero sound” (ZS,ZS") and BCS diagram$ll]. The ZS tains complete information about the system's low-energy
contribution and its cross term Z&ccount for particle-hole  dynamics. Observables pertaining to this low-energy dynam-
excitations ¢,=*1,0,=+*1), while the BCS term de- ics are therefore unaffected by the successive mode elimina-
scribes  two-particle €,=o0,=+1) or two-hole tion and hence independent@fFor example, the scattering
(o,=0,=—1) excitations. length[23]

The above formulas serve as the starting point for the
investigation of a variety of specific physical systems. With
their help one can derive such diverse results as the one-loop
renormalization-group equation for an interacting Bose gas,
the one-loopB function of ¢* theory, the screening of Stays constant under the fld@2), as thes dependence of the
fermion-fermion interactions, or the BCS instability. Details parameters) and A just cancels outup to third-order cor-
of these applications are presented in the following sectionrections.

(62

dp m
U(S) Bl U(S)ZLpKA(S)W E

} (63

m
a=-——
4

B. The link to ¢* theory

There is an interesting relationship between the réajt
_ _ _ _ ~and the one-loog3 function for real ¢* theory. The ¢*

Our first example pertains to spinless bosons with a poinfamiltonian describes the dynamics of coupled anharmonic
interaction @ function potential in real spage oscillators. It reads, in three spatial dimensions,
H=H©+V with kinetic energy

VI. EXAMPLES

A. Bosons with point interaction

. 2U
(Ik|VIji) s =5 Sk vk, kerkps (57)
Q R 0 1 3 2 2 2 2
H¢ )=§ d3x:[ 7(X)%+ |V p(X) |2+ m2p(x)?]:
with the Kronecker symbol enforcing momentum conserva-
tion, Q) being the spatial volume, and the coupling con-
stant. Provided the magnitude of the external momédanta
andk; is negligible compared to the cutoff, momentum
conservation implies that the internal modg® mustboth

=2 & ajay (64)
X

and interaction
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9 3 4 <|k|V|ji>—:[V(Q)5s|si55ks-_V(ql)5sksi55|s-]5Ki+K-,Kk+K|a
V—Ef d3x ¢(x) : : )
g 4 1 duly antisymmetrized to account for Fermi statistics, and
Ty I1 (&g, + afka) 05k, 0- with {s,} denoting the spin quantum numbers and’ the
kika ks kg a=1 \J2€ respective momentum transfers
(65) q:=K|_Ki:K]'_Kk,
Herem denotes the mass$) the spatial volumeg the cou- KiK. =K. —K 29
pling constant, and, the single-particle energy a-=RRi=Ri=Ke (72)
€= JZ . (66) We investigate scattering processes for which
0<|q|,A<|q'[,|K;+K;|,KE. (73

The field ¢ and" its conjugate momentumr are time-
independentSchradinger picturg operators that satisfy the |, yhis regime only the ZS contributia®4) can significantly
commutation _relat|ons for posons, anch' are the_ assoCi- modify the two-body interaction; its cross term Z$Eq.
ated an]hllatlon and creatl_on o.pergtors, respectively. Whl|%55)] as well as the BCS contributicis6) are suppressed by
the kinetic part of the Hamiltonian is normal ordered (: :), 5 factorA /K. This can be seen directly from the geometry
the interaction is not. of the Fermi surface. The three constraints on the intermedi-

When expressed in terms of annihilation and creation opae giate ) both K, andK, lie in the cutoff shell of thick-
erators the Hamiltonian takes on a form that is very similar

Lo . ness 2\; (ii) more stringently, one of them lie in the infini-
to tha} of the_‘ q“"?‘”t“m gas Hamiltoniédd). Mor(_e prgusely, tesimal shell to be eliminated; andii) K,—K,=—¢q’
the ¢” Hamiltonian containsa Bose gas Hamiltonian with (ZS') or K, +Kp=K;+K; (BCY), respectively—reduce the
two-body interaction matrix element momentum space volume available to the internal momen-
9 tum K, to O(KZ"2AAA). In contrast, for|g|~A the ZS
- = S ) 6 contribution with its conditiorK ,—K,=—q allows a mo-
0 Ve e NN ©7 mentum space volume of the ordéf ‘AA.
To evaluate the ZS contribution at some given momentum
transferqg, we first define the anglé between—q and the
internal momentunk 4,

aKIVIi .= 5

The derivation of a flow equation far can now proceed in
the same vein as that fdd, again starting from Eq(52).
Now, however, apart from 22 particle scattering, theb*
Hamiltonian with its additional interactionsa’a’a’a, q-K,g

a'a'a'a', etc., also permits 24 and 2-6 scattering. cosy=z.=— Tk’ (74)
Therefore, in Eq(52) the intermediate state may be not just qllfa

lab), but also|abik), |abil), [abjk), [abjl), or |abijkl).  change coordinates from originak} to little (k) momenta,
As long as the magnitude of the external momenta is negliand write, up to corrections of ordég|/Kr,

gible compared to the cutoff, it is in all six cases

€,=€p=¢€, and €a— ep=V(|Ka| = [Kp|) =vE(0oa| ko] = op| Kp|)

=velqlz, (75

. g .
(AKIV] (VLD s = 5= (KT« 8 -k,
’ T 40€ T with v denoting the Fermi velocity. Next we note that the
68 term with 8(a,) 8(— o) and the term withd(— o) (o)
Hence in order to account for the larger set of allowed interYield identical contributions; therefore, it suffices to consider

mediate states we merely have to introduce an extra factd"ly the first term and then multiply it by 2. Finally, assum-
6 and obtain thus ing that in the interaction matrix elemefitl) the cross term

is negligible,
g°As. (69) IV(g)|<|V(a)l, (76)

o 2 2 the two matrix elements in E¢54) can simply be replaced
ForA>mitis ex=A, p(€,)=Qe}/27° and the flow equa- by v/(q)2 modulo Kronecker symbols for spin and momen-

A _ dlnEA 3p(€A)
977 dinA 80

tion reduces to tum conservation. By virtue of these Kronecker symbols one
392 of the two summations over internal modes collapses trivi-
=— ally, leavin
2
in agreement with the well-known one-loop result for e AV(qQ)=— —A[E O(A—ka)) 0|k —1glz+A)
function of ¢* theory[24,25. Ur | a

0(o2) 6(|alz—|ka|)
lalz

C. Screening of fermion-fermion interactions

}V(q)z- (77)
We consider nonrelativistic fermions in spatial dimension
d (d=2) that interact through a two-body interaction Here the first twod functions explicitly enforce the sharp
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cutoff constraint for bottk, andky, (|ka|,|ky|<A), while the The above equation can be immediately integrated from
latter two @ functions enforcer,=1 ando,=—1, respec- cutoff A>|q|,|k,| (symbolically, A—%) down to
tively. Under these constraints it is always=[0,7/2) and A <|q|,|ka| (symbolically, A—0), to yield the total modifi-
hencez>0. cation of the two-body interaction

1 1 32 G(A_|ka|)0(|ka|_|q|Z+A)6(Ua)9(|q|Z_|ka|) -

Ver @ Voardd) vrS lalz 0 79

At the lower bound (A —0) the various conditions imposed nated shell is given by, =vrA. The eliminated shell itself

by the 6 functions cannot all be satisfied simultaneously andcovers an infinitesimal energy interval of width {AAs),
therefore the product of functions vanishes. At the upper which in turn corresponds to a numbéi(eg)veAAS) of
bound (A —<), on the other hand, the cutoff constraints states. Of the two summations over internal modes one col-
imposed by the first tw@ functions are trivially satisfied and lapses trivially due to momentum and spin conservation,
thus can be omitted. In this case the sum avés evaluated leaving

by turning it into two integrals, one over a radial variable

such agk,| or €,, the other over the solid angle. At a given AV= V2 A[E (o)

solid angle and hence givem the fourthé function restricts 20eA | G a

the radial integration to the rangdk,| [0, qg|z] or, equiva- V2 (&)

lently, e,€[0ug|q|z]. This energy interval in turn corre- _ _PL&F) 5

sponds to a numbdp(er)vg|q|z) of statesp(er) being the " 2vgA plep) veAAS=——7—=V7As.  (82)
density of states at the Fermi surfa¢€he density of states

takes any spin degeneracy into accouffthe integration From this flow equation for the BCS coupling(s) we

over the solid angle is constrained to a semisphere, due thmediately conclude that as long as the initial coupling

9 e[0,m/2), and hence reduced by a factor 1/2 as compared(0) is positive,V(s) diverges as—c. This indicates the

to a full-sphere integration. Altogether we obtain occurrence of binding“Cooper pairs”) at very low tem-
peratures. Furthermore, we can again convince ourselves that

1 1 2 1 the sequence of effective theories retains complete informa-
Vo @) Voudq) _vr 2 p(ep)velalz WZP(EF) tion about the system’s low-energy dynamics: Low-energy
€ a (79  observables such as the zero-temperature{gZp
and thus
Ag=2A(s)exg — ———— 83
1 0=2A(s) F{ P V(S) 63
1 _
Veﬁ(Q):[V—e(c])+P(EF) (80 do not depend on the flow parameteand are thus unaf-
bar fected by the successive mode elimination.
This result describes the well-known screening of fermion-
fermion interaction$26]. VII. CONCLUSION

_ B We have succeeded in linking renormalization to trans-
D. BCS instability port theory. Our line of argument proceeded from the exact
Our last example pertains to fermions with an attractivemicroscopic dynamics, via the Nakajima-Zwanzig projection

pairing interaction technique, to a macroscopic transport equation for selected
- expectation values and then, via second-order perturbation
(IKIV[ji) - ==V 8k, k0, k[ 555 05,5, Fs5,955.] » theory, Markovian limit, choice of the Robertson projector,

(81 and a suitable rearrangement of terms in the transport equa-
tion, to the approximate effective Hamiltonian that governs
which is the simplest form of BCS theof27]. Due to the the nondissipative part of the macroscopic dynamics. We
pairing conditionK;=—K;, K;=—Ky it is impossible to investigated the ramifications of this result for the low-
satisfy in the ZS and ZSterms the requirement that at least energy dynamics of interacting quantum gases: Contracting
one of the internal modes be in the eliminated shell. Hencéhe set of selected expectation values by discarding itera-
only the BCS term{56) can modify the coupling constant. In tively those observables that pertain to short-wavelength ex-
the BCS term there are contributions wifio,) (o) and  citations, we obtained a sequence of effective Hamiltonians
0(— o,) 6(— o), respectively, which yield identical results; that describe the dynamics on successively larger length
therefore, it suffices to consider only the first contributionscales. We then focused on the two-body interaction in these
and then multiply it by 2. The pairing condition implies effective Hamiltonians and convinced ourselves, in several
€,= €p= €, , Which for modes in the uppew(=+1) elimi-  rather diverse applications, that it varies in accordance with
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one-loop renormalization-group equations. We have thugort and renormalization will have to prove its merits in new
substantiated our original claim that renormalization-groupapplications where the conventional approaches fail: for ex-
equations can be obtained within the Nakajima-Zwanzig pro@MPple, when time scales are no longer well separated and the

jection approach and hence renormalization can be embe&/_Iarkovian limit ceases to be justified; or when, in the course

ded into the aeneral mathematical framework of transpor f successive mode elimination, one starts to discard states
theor 9 POMyith a finite population, thus introducing dissipation into the
Y.

) ) ) ~ effective macroscopic dynamics. It is my hope that the
There remain many open questions worth investigatingpresent paper will help stimulate research efforts in these and
Clearly, a unified theoretical framework for dissipative trans-related directions.
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